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1.0 SUMMART 

This report describes the work performed on the Phase II 

program for Contract Nonr 281*0(00) - Annular Nozzle Ejector. 

The Phase II program fabricated the full scale ejector as- 

sembly and associated equipment.    Tests conducted with this hardware 

indicated that its augmentation performance was approximately 5 points 

les>    than that of the small scale hardware (0modeT " 1.53, 0fuiT scaie * 1»W). 

The jet wake data in combination with jet area distribution indicated the 

discrepancy between full scale and small scale results may have been 

caused by less effective ejector action due to the non-uniform momentum 

curtain.    The ejector wake data indicates roughly an order of magnitude 

reduction in wake wotal pressure and temperature from the unaugmented 

turbojet'. 

Ground effect tests were conducted with the small scale model 

constructed in Phase I.    This model geometrically represents the full 

scale hardware.    These tests indicated that an augmentation reduction of 

approximately 15 points could be anticipated at a ground clearance of 0.35 

diameters.    The decrease in performance began  at approximately 1.3 dia- 

meters.    Blockage of the secondary flow passages  improved performance only 

below 0.10 diameters ground clearance.    Above that level the best perform- 

ance was obtained by permitting secondary pumping to continue. 

k. 
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STMBOL LIST 

Consistent units are used where required end are otherwise noted. 

A.        - Mixing tube throat area 

A - Mixing tube exit area 

A.        ■ Primary jet exit area 

A » Bellmouth exit area 
B 

A - Area 

AR       - Aspect ratio - (Mean Primary^OMle^Circumference) 

C ■ Discharge coefficient 

C ■ Specific heat at constant pressure at operating temperatures 

F ■ Measured thrust 
ID 

g    ■ Gravitational constant 

P   ■ Pressure 

T   - Temperature 

7    - Velocity 

»    ■ Measured weight flow n 

J   - 778 ft.lb./fcTU 

y ■ Ratio of specific heat at operating temperature 

0   » Augmentation ratio 

p    ■ Gas density 

As        " Entropy change 

Subscript 

- numerical subscripts see Figure 8 

o - Ambient 

t - Total 

iT 



2.0        INTRODUCTION 

The Phase I final report presented model test data curves 

covering the ejector geometry employed in the full scale ejector with 

the exception of the upstream ducting and plenum chamber. This data 

for a model which incorporates an extremely high volume, low loss 

plenum chamber is reproduced in Figure 1. 

The significant ratios of the ejector model which was scaled 

up for this program were: a mixing-tube-throat to primary-nozzle-throat 
AA A. area ratio, -j—,  of 9.7u,  a mixing tube area ratio, -r-,  of 1.95, a mix- 
Aj AA 

ing-tube-length to throat-diameter ratio of 3,   and a primary nozzle 

aspect ratio, AR, of approximately 100.    To reduce costs,  a simple, con- 

stant area plenum was designed for use with the full scale ejector assembly. 

In order that model test data be available for intelligent comparison with 

the full scale data,  the model was modified accordingly.    Tests of this 

modification in the first phase program indicated that an augmentation 

ratio penalty of 5-7 points would occur.    This is based on supply total 

pressure to model, not total pressure at the nozzle exit.    It is to be 

emphasized that for an aircraft installation proper plenum design would 

essentially eliminate this penalty. 

In Phase I of this program the thrust augmentation was ref- 

erred to the measured thrust of the primary annular nozzle alone corrected 

A plotting error previously published in Reference 1 has been corrected 
and the augmentation reference has also been revised as described in the 
text. 



for secondary flow affects (Reference 1 Appendix). The resulting ref- 

erence primary thrust is equivalent to that used by other ejector 

investigators. However, its use in this program has resulted in mis- 

understandings. Consequently, and henceforth, the thrust augmentation 

ratio, 0, will be referred to the isentropic thrust which would result 

from expanding the measured primary flow rate adiabatically from the 

supply total pressure and temperature to ambient pressure. Applying 

this augmentation reference to the Phase I work would reduce the 

published augmentation ratios approximately 1%. 



3.0 DISCUSSION 

A very large portion of the Phase II program was expended 
i 

in the fabrication of the full scale ejector hardware, thrust table, 

test installation and necessary instrumentation. Figure 2 shows the 

complete test installation. Figures 3 and h  show the details of the 

ejector primary nozzle and mixing tube, respectively. Appropriate test 

stand calibration tests and ejector performance evaluation tests were 

conducted. 

This phase also included the evaluation of this same 

ejector geometry in ground effect using the small scale model fabricated 

in the first phase program. The same test installation as used in the 

first phase was used in this work (Refer to Reference 1 Appendix). The 

linear scale between these two ejectors is approximately 1/9: the thrust 

scale is approximately 1/86. 

The size of the full scale hardware was such as to require 

only 1/3 of the hot gas output of the J3Ü-WE-36 turbojet; the remainder 

was bypassed vertically to eliminate any extraneous thrust from the 

measurements. 

3.1 Full Scale Ejector Program 

3.1.1 Instrumentation 

The instrumentation used in the full scale program was 

designed to provide a comparison with performance obtained in the prev- 

ious small scale programs. Factors measured were primary weight flow, 

total supply pressure, temperature and thrust. The target accuracy was that 



established for standard turbojet acceptance tests:    + 1% on thrust 

and t 1.556 on airflow rate.    Additional Instrumentation was used to 

define both the primary jet total pressure profile and the ejector as- 

sembly wake total pressure and temperature profile. 

The necessary pressures were measured with appropriate 

indicators!    water manometers for low pressures and mercury manometers 

for Intermediate pressures.    The gas temperatures were measured with 

chromel-alumel thermocouples;  the indicating instruments were a 

Rubicon potentiometer and a self-balancing potentiometer.    The thrust 

was measured on two axes using Hagan "Thrustorq", pneumatic, null 

balance,  load cells.    The output of these units was read on bourdon 

tube "precision test gages" and recorded with a multi-channel Foxboro 

circular chart recorder. 

Figure 5 shows the general arrangement of the load cells 

in a schematic plan view.    Two load cells,  one on either side of  the 

ejector centerline, were used to measure the thrust of the complete 

ejector assembly and/or primary nozzle alone.    Figure 6 shows the out- 

board load cell from the front and its relation to the ejector hardware. 

The use of two load cells to measure ejector thrust results in the 

most direct force path.    One load cell was used to react the thrust at 

right angles to the ejector axis    (See Figure 7). 

Measurement of the primary flow In this full scale system 

presented something of a problem.      Since approximately two-thirds of 

the jet engine flow was by-passed, it was not possible to calibrate the 



engine inlet shroud for flow measurement.      Economic considerations pre- 

cluded using sufficient length of straight, unobstructed duct upstream and 

downstream of the orifice to meet ASME standards.    In addition,  the small 

difference between the turbojet exhaust total pressure and the required 

supply total pressure to the annular ejector assembly precluded the use 

of a conventionally sized orifice.    The resulting flow section (Fig.  8) 

incorporated a settling length of 3.1 diameters downstream of the bypass 

stack, followed by a 1.1 diameters long straightening section.      The 

lengjth-diameter ratio of strtighteners was 10 (Fig.  9).    This, in turn, 

was followed by a sharp edged orifice 1 diameter downstream from the 

straightener section.    The diameter ratio of  the orifice was approx- 

imately 0.8Ü,   in order to keep pressure losses low.    The sharp edge of the 

orifice plate was flash chrome-plated to protect it from corrosive effects 

of hot exhaust gases. 

The static pressures were measured approximately 0.76 

diameters upstream of this orifice (P.) and at approximately 0.3 diameters 

downstream (P,).    At each location four pressure taps were equally spaced 

around the duct.    These were manifolded at each location and connected to 

the necessary indicating manometers.      Downstream from the orifice ap- 

proximately 0.75 diameters a total pressure and temperature rake was 

installed to determine the supply conditions at the ejector assembly In- 

let,  (Fig. 10).    It is believed that temperature losses between the flow 

measuring orifice, the measurement point, station k, and the primary 

nozzle outlet were  insignificant, due to the close coupling of the elements. 



3.1.2        Calibration 

3.1.2.1        Flow Section 

The flow section utilized in this test does not meet 

ASME standards, consequently, published orifice coefficient data could 

not be used and calibration was required. The calibrating standard was 

a 13 half angle, conical nozzle which is shown installed in Figure 11 

at the ejector assembly mating flange. The performance of this type 

nozzle is well documented in Reference 2, which defines the discharge 

coefficient and velocity coefficient in terms of the pressure and area 

ratios. 

To accomplish the calibration, tests were made at the 

required supply total pressure (PL*)« This was recorded as were the 

supply total temperature, (T. . ), flow orifice (sharp edge) pressure dif- 

ferential (AP ■ P1 - P.), static pressure upstream of flow orifice (P, ) 

and conica?. nozzle exit area. In addition, the thrust produced by the 

calibrating conical nozzle was measured. These runs were made for a 

series of increasing conical nozzle exit areas in order to define the 

dependence of the flow orifice, flow coefficient (K') on jet exit area 

and pressure differential. With knowledge of the supply conditions 

(Pi . and T, ), and the data of Reference 2, it was possible to determine 

the test flow rate (w) and thrust. This flow rate was, in turn, used 

to determine the flow coefficient, K'. 

The compressible flow rate through a conventional orifice 



V?(«^ may be determined from w - YAgKl/   -ijr-i Ig    V2p0^ Iusing published 

data for Y ■ the conventional  Expansion factor 

and standard flow coefficient 

3] 
A 

XT 
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In this report the flow coefficient is modified to 

[« - YA2K  g VzPo T0 

and is determined from 

:' ■ *. V 
calibration runs 

The resulting calibration curve permits selection of 

the appropriate value of the flow coefficient (K1) for reduction of the 

ejector performance data. The resulting spread of the K' values was 

less than 1%  of K1. It is believed that the ejector primary flow rate 

is accurate within a tolerance of ± 1.5$« 

The calibration was checked by comparing the measured 

thrust of the conical noszle with that computed by use of the data from 

Reference 2. These values of thrust agree within the limits of accuracy 

of the referred data. 

3.1.2.2 Thrust Calibration 

The calibrating elements were Dillon dynamometers of 

appropriate range which were carefully calibrated on a Tinius Olson 



tensile testing machine immediately before use to insure greatest poss- 

ible accuracy. 

3.1.2.2.1 Bigine Axis 

The calibrating load was applied directly to the 

thrust table as shown in Figure 12 through th?» indicating dynamometer 

by a turnbuckle secured to a "dead-man". The applied load and indicated 

load (load cell output in psi) were recorded. As expected, the output 

was found to be linear with applied load.  The least squares technique 

was applied to the data to define the calibration constant. T is 

believed that the resulting encine thrust data is accurate within t  l.OjG. 

3.1.2.2.2 Ejector Axis 

Figure 13 shows the setup for thrust calibration 

along this axis.    Indicating dynamometers were installed in both thrust 

links for this calibration (not visible in the Figure).    The calibrating 

load was applied through a third dynamometer and whiffle tree along the 

geometrical axis of the ejector assembly by means of a turnbuckle.    The 

data obtained and the resulting calibration were identical to the prev- 

ious case.    Separate calibrations were obtained for each of the two load 

cells.    This permits analysis of differential loading due to misalignment 

of the thrust axis and the geometrical axis, and thermal expansion.    The 

thrust links are sufficiently long to negate cosine effects enduced by 

thermal expansion. 

3.1.2.3 Over-all Accuracy and Definition of 0 

The over-all accuracy of the augmentation ratio, 0, is t 3% 



where 0 is defined as follows 

fij f .    m . 

m   as-o 
g 

and where 

Vas-o -   V 2g JCp 1ht    Vl - 
IP   l3C£ 

(i)T 

3.1.3 Results and Evaluation 

The prime emphasis of the evaluation tests was to 

establish the magnitude of Reynold's number and elevated temperature 

effects on the system performance.    Toward this end, tests were mad« of 

the primary annular nozzle alone and of the complete annular ejector 

assembly (including mixing tube).    As in the previous model tests,all 

runs were made at a supply pressure of 21" Hg (pressure ratio of ap- 

proximately 1.7).    The resulting supply temperature was in the 1600-1700 R 

range.    The prescribed pressure was achieved by operating the turbojet 

at approximately 90% rpm and adjusting the bypass as required.    For 

all runs the equipment was operated for sufficient time to permit 

equilibrium conditions to be established, as indicated by the total temp- 

erature at station h (see Figure 8), prior to data recording.    The by- 

pass feature permitted much greater flexibility in adjustment of the 

supply pressure than would have been possible by the conventional throttle 

alone. 

3.1.3.1 Primary Annular Nozzle 

The initial series of five tests with the primary nozzle 



resulted In an average uncorrected thrust of approximately 1035 pounds. 

This performance in terms of augmentation ratio, 0, is 1.01. The model 

test results had indicated a comparable primary nossle performance, 0 

of 0.99* This variance is believed insignificant, particularly when 

it is considered that the accuracy of 0  is of the order of ± y%.    Dur- 

ing these tests, static pressures measured in the eye cf the annulus, 

as was done in the model tests, indicated slightly greater bellmouth 

flow for the full scale hardware. This fact tends to support the ind- 

icated variance in the primary nozzle performance. 

The loss in primary nozzle performance due to the 

low volume plenum chamber duplicated results of the model tests. This 

plenum loss amounted to a reduction of approximately 3 points (from a pos- 

sible 0  of l.Oh to 1.01). 

The primary jet exit was traversed at three locations 

to determine total pressure profile. These are presented in Figure lit. 

The average pressure loss indicated by these profiles was approximately 

9%  (approximately h% on a thrust augmentation basis). While the var- 

iation from point to point is not appreciable, the total effect com- 

bined with the area distribution could adversely affect the over-all 

ejector performance. 

In the fabrication of the primary nozzle it was ex- 

tremely difficult to maintain the concentricity of the inner and outer 

shells forming the annular nozzle throat. Consequently, the area dis- 

tribution was non-uniform. In order to reduce the variation below that 

which existed in the "as spun" and "as assembled" condition, 2k  spacers 
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were incorporated to "equalize" this annular throat as much as possible. 

It will be noted from the throat dimensions given in Figure lb that this 

was not completely successful. 

3.1.3.2 Complete Ejector Assembly 

Immediately following the evaluation of the primary 

nozzle, a series of three tests of the complete ejector produced an 

average uncorrected thrust of lh$2 pounds.    This performance in terms 

of augmentation ratio, 0, is l.ul or five points lower than the model 

test results.    The model tests had indicated an augmentation ratio of 

I.I46 could be achieved with an ejector assembly incorporating the plenum 

design used in this full scale hardware.    Proper plenum design could 

increase this full scale augmentation performance approximately 7 points 

to I.I18.    This point has been located in Figure 1.    It is believed that 

the loss in performance between the small scale work and the full scale 

work can be attributed, at least partially,  to the non-uniformity of 

the area distribution discussed in paragraph 3.1.3.1. 

The work of Reference 3 points out that scale 

(Reynold's number) effects are negligible and that the effects of an 

elevated temperature primary gas are self compensating.    The increased 

temperature at the same supply pressure produces a higher velocity prim- 

ary Jet which decreases the basic mixing efficiency.    In contrast, the 

increased viscosity of the elevated temperature primary Jet improves the 

mixing process.    The net effect of temperature is seen to be negligible. 

The subsequent test program to substantiate this 

performance and to determine means of improving it was characterized by 
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erratic and deteriorating performance. Recalibration of the instrument- 

ation did not reveal the source of difficulty. 

Prior to dismantling the assembly for internal inspec- 

tion the wake was traversed one exit diameter downstream of the mixing 

tube to determine the wake total pressure and temperature profiles. 

This data is presented in Figure 15. 

Immediately following this test the mixing tube was 

removed and spot checks of the primary wake total pressure were made. 

These checks revealed that the average jet pressure loss had increased 

to approximately 23?, i.e., the effective total pressure for correla- 

tion of this exit wake profile data was approximately 17 inches of mercury. 

It was also noted that the primary performance had deteriorated. This 

same information pointed out the probable cause of the inferior per- 

formance . 

Referring again to the wake profiles in Figure 15» 

it is seen that an appreciable reduction is achieved in the basic jet 

temperature and pressure. The peak exit pressure is seen to be 17*5 

inches of water or approximately 15 fold reduction} the peak temperature 

is 200°F (660°R), or a h  fold reduction from the approximate 1620°R jet 

exit temperature. 

3.1.3.3        Primary Annular Nozzle Damage 

Inspection of the interior of the duct system, start- 

ing with the straightener section revealed no cause for the increase 

In pressure loss or for erratic performance. Inspection of the primary 

nozzle inlet revealed that the divider plate (-35 in Figure 3) had been 
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severely damaged, apparently by thermal fatigue in combination with 

differential expansion between the duct outer walls and the divider 

plate. Figure 16 shows the damage to the divider plate which was origin- 

ally installed to improve the diffusion into the plenum chamber. The 

right hand photo in Figure 16 shows that a large "tab" (approximately 

$ x 7 inches) was torn from the divider prior to this complete fail- 

ure. Markings on the inner wall of the duct indicate that this "tab" 

had flexed up and down several times, which probably caused the erratic, 

poor performance. The complete failure of the divider plate reduced 

the duct area approximately 60 percent. This undoubtedly was the cause 

of the high indicated plenum loss. Complete repair of this damage was 

not possible prior to the end of this phase of the program. This work 

will be continued into the subsequent phase. 

3.2        Small Scale Annular Nozzle Ejector Ground Effect Evaluation 

Ejector performance tests were conducted in ground effect, 

using the small scale hardware which was fabricated in Phase I. This 

hardware represents the full scale configuration. It should be em- 

phasized that this original configuration was optimumized for out-of- 

ground effect operation and does not necessarily represent an optimum 

ground effect configuration. The data is presented in Figure 17 as aug- 

mentation ratio versus dimensionless ground clearance. It will be noted 

that there is a gradual deterioration in performance as the ground clear- 

ance is decreased below approximately 1.3 diameters. This deterioration 

continues to approximately O.li diameters ground clearance at which point 

the augmentation ratio is approximately 1.3» Further reduction of 
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ground clearance improves 0. In fact, at ground clearances less than 

0.15 diameters, 0 Is greater than that out-of-ground effect. The reason 

for this performance is hypothesized as follows: the ground plane be- 

came an influence in the cycle by increasing the static pressure at the 

mixing tube exit plane. At first, this pressure was only sufficient to 

cause a reduction in the secondary mass flow handled and not sufficient 

to cause a net gain in performance due to its reaction on the downward 

facing projected area of the diffusing mixing tube. By continuing to 

decrease the ground clearance, the exit static pressure increased to the 

point where a depression no longer existed at the eye and consequently, 

bellmouth pumping was stopped. This occurred at approximately 0.15 

diameters ground clearance. The exit static pressure acting on down- 

ward facing projected area of the mixing tube at this ground clearance 

was sufficient to improve performance. It was found that the mixing tube 

inlet continued to pump to approximately 0.08 to 0.12 diameters ground 

clearance. 

It will be noted that only below 0.1 diameters ground clear- 

ance was any benefit derived from complete blockage of either of the 

secondary flow paths, the bellmouth or mixing tube inlet. 

The problems encountered with the full scale hardware pre- 

cluded further expenditure of effort in the ground-effect regime. 

Hi 



h.O 

U.1 

CONCLUSIONS 

The effect of the ejector size (Reynolds' nunber) on 

ejector performance is negligible. 

h»2 The effect of elevated temperature on ejector performance 

is negligible. 

1*.3        The maldistribution of jet area and jet total pressure is 

probably largely responsible for the variation between small and full 

scale ejector performance. 

h»h A performance penalty can be expected with the present 

ejector configuration »*ien operating at ground clearance from 1.3 to 

0.15 diameters. Below 0.15 diameters superior performance is achieved. 

U.5        Roughly an order of magnitude reduction of the wake 

temperature and total pressure is achieved by the use of the ejector 

system over a straight turbojet exhaust. 
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FIGURE 6J EJECTOR AXIS LOAD CELL INSTALLATION (FRONT VIEW) 
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FIGURE 9:    FLOW STRAIGHTENER 
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FIGURE 13:    EJECTOR MIS LOAD CELL CALIBRATION SET-UP 
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